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1 Introduction

1.1 Background

Scientific analysis has a significant impact on sports, including data analysis, sports medicine, and training

methods [1]. In basketball, besides of studying the athletes themselves—crucial for monitoring their health and

maintaining strength—studying the flight of the basketball is vital for improving players’ performance. Players

can make better decisions about positioning and launch angles if they understand the math and science behind

the game.

The academic evolution of basketball trajectory and mechanics started from broad numerical shooting mod-

els and then developed into specialized analyses of shot types, such as bank shots. Early works—such as

Numerical Analysis of the Basketball Shot [2] and A Theoretical Mechanics Analysis of Shooting Basket-

ball [3]—established comprehensive frameworks for quantifying variables like launch angle, velocity, and

spin. Although these studies primarily addressed shooting problems like-free throws, their foundational in-

sights paved the way for later investigations.

Building on these models, subsequent research acknowledged that bank shots present distinct geometric

challenges due to the ball’s interaction with the backboard. Optimal Targets for the Bank Shot in Men’s Bas-

ketball [4] not only proposed a comprehensive mathematical model considering many factors like drag force,

but also successfully identified optimal impact zones on the backboard. This work effectively bridged the gap

between general shot mechanics and the specialized demands of bank shot analysis.

Further researches incorporated more advanced computational methods. For instance, Application of Monte

Carlo Simulations to Improve Basketball Shooting Strategy [5] employed stochastic modeling to simulate dif-

ferent shot conditions, yielding probabilistic conclusions that are applicable to bank shot optimization. More

recently, LSTM-BEND: Predicting the Trajectories of Basketball [6] used machine learning to predict ball trajec-

tories with high precision, further refining our understanding of shot dynamics in more complicated scenarios,

in which more factors are considered.

Together, these studies illustrate a clear evolution—from early general models to targeted analyses of bank

shots—demonstrating how theoretical insights and computational innovations have progressively enriched the

academic field while informing practical strategies in competitive basketball.

Personally, I have played basketball for several years and have reviewed numerous basketball theories and

watched plenty of instructional videos to improve my shooting skills. However, most of these videos rely on

the coach’s personal experience rather than scientific research, and among researches an investigation to the

rotation in bank shot (layup shot) is lacked temporarily. Therefore, this research will investigate “what is the

relationship between the angular velocity and translational velocity of the basketball in layup shots.”

3



1.2 Scenario

The layup, also known as a bank shot layup, is one of the most fundamental and important techniques in

basketball. Players execute layups by either shooting the ball off the backboard or rolling it into the basket with

their fingers. Layups are effective scoring techniques since they are the closest shots to the basket, aside from

dunks. Over the past few decades, several types of layups have been developed and practiced. For example,

players must impart spin to the ball at a certain velocity and shoot it at a strategic angle to avoid defenders.

Given the importance of layups in basketball, players need to increase the probability of successfully scor-

ing. Therefore, controlling the trajectory of the ball is crucial. Brancazio proposed that players could shoot

more consistently if their shots require less energy [1]. This hypothesis has been used in other related studies

and will also be used in this paper. Besides controlling the velocity, players must adjust the launch angle and

spin of the basketball.

Figure 1: Figures in three dimensions

2 Assumptions

1. This paper neglects the effects of air interactions, including air resistance, buoyant force, the Magnus

effect, and others. Thus, the only forces acting on the basketball are gravitational force and the normal

force from the backboard. Additionally, the trajectory of the ball in the air is assumed to be a perfect

parabola, which will be demonstrated in this paper.

2. A goal is considered scored when the center of the basketball coincides with the center of the basket rim.
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Since the radius of the basketball is smaller than that of the basket rim, the ball will enter the basket when

the centers coincide. Furthermore, the ball must enter the basket from above.

3. In practice, players perform a layup when their jump height is insufficient for a dunk. Therefore, we

assume the initial height of the ball is lower than the height of the basket rim.

4. This paper uses real-world data. For example, the upper edge of the basketball rim in the NBA is 10

feet (3.05 m) above the floor and parallel to it. The mass of the basketball is approximately 0.6 kg.

The coefficient of restitution is between 0.85 and 0.88, and we specify it as 0.86 [7]. The magnitude of

gravitational acceleration is approximately 9.81 m/s2.

3 Theory

3.1 Projectile trajectory function

3.1.1 Projectile Trajectory Function in Two Dimensions

Neglecting air resistance, the flight of the basketball can be treated as projectile motion, because the only forces

acting on the ball are gravity and the normal force from the backboard. The basketball may also spin due to

initial spin or interaction with the backboard, which will be explained later.

First, we analyze the trajectory function in two dimensions. We define the X-axis as the forward direction

and the Z-axis as the vertical direction. The variable x represents the horizontal displacement, z represents the

vertical displacement, v⃗ represents the initial velocity, and γ represents the shooting angle, which is the angle

between the initial velocity and the X-axis. Decomposing the vector v⃗ into components along the X-axis and

Z-axis, we have vx “ |v⃗| cos γ and vz “ |v⃗| sin γ.

The velocity components are given by:

9x “ vx “ |v⃗| cos γ

9z “ vz “ |v⃗| sin γ

Integrating both sides, we obtain:

x “ vxt ` c

Given the initial conditions t “ 0 and x “ 0, we find c “ 0. Thus:

x “ vxt (1)
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For the Z-direction, the velocity is expressed as:

vz “ vz0 ´ gt

where vz0 is the initial velocity in the Z-direction, g is the gravitational acceleration, and t is the flight time.

Substituting vz with the derivative of displacement 9z, we have the follows.

9z “ vz0 ´ gt

Integrating both sides, we get:

z “ vz0t ´
1

2
gt2 ` c

Given the initial conditions t “ 0 and z “ h1, we find c “ h1, where h1 is the initial height of the ball.

Therefore:

z “ vz0t ´
1

2
gt2 ` h1 (2)

To build a trajectory function, the independent variable should be x and the dependent variable should be z.

Using x “ vx0t, we substitute t “ x
vx0

into the equation above:

z “ vz0
x

vx0
´

1

2
g

ˆ

x

vx0

˙2

` h1

Rearranging gives:

z “
vz0
vx0

x ´
g

2v2x0
x2 ` h1

Substituting vx0 “ |v⃗| cos γ and vz0 “ |v⃗| sin γ, we have:

z “
|v⃗| sin γ

|v⃗| cos γ
x ´

g

2p|v⃗| cos γq2
x2 ` h1

Simplifying, we obtain the following.

z “ tan γ ¨ x ´
g

2p|v⃗| cos γq2
x2 ` h1 (3)

Thus, the trajectory function in two dimensions is established.
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3.1.2 Projectile trajectory function in Three Dimensions

For the trajectory function in 3 dimensional space, we can express the point in three dimensional space as

Rpxq “ px, ypxq, zpxqq. For trajectory function in x-direction, we have the same equation with the one in two

dimensions, since the displacement in x-direction will be used as an unit to build further trajectory functions.

Indeed, we have:

x “ vxt

We have already yielded the function of z with respect to x from Eqns. (3). However, we still need to adjust

the angle to vector.

For the function of y with respect to x, we know that there is no forces in y-direction similar with the

situation in x-direction. We substitute x variables with y and we get

y “ vyt

Also, in order to build a trajectory function, the independent variable should be x and the dependent variable

should be y. For the equation above, substituting t with t “ x
vx

using the equation x “ vxt. Then we have:

y “
vy
vx

x (4)

In z-direction, there is gravitational force applying on the ball, so the function is different from them in

x-direction and y-direction. Actually, the function of displacement in z-direction with respect to time is same

with the previous one (Equation 2).

z “ vz0t ´
1

2
gt2 ` h1

“ vz0
x

vx0
´

1

2
gp

x

vx0
q2 ` h1

(5)

To discuss easily, the velocity in three dimension will not appear; instead, the components of it—the velocity

in x-direction, the velocity in y-direction, and the velocity in z-direction—will substitute it.

3.2 Bounce Theory

3.2.1 General View

There are basically three types of rebound for the basketball in two dimensional space: without initial spin,

with forward initial spin, and with backward initial spin (See in Figure 2). By the way, the spin can be at any

direction and with any velocity technically.
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Figure 2: Brancazio, P. J. (1981) [Graph]. Physics of basketball [1]

We specify the x-direction as forward direction to the basket, the y-direction as horizontal direction along

the backboard, and the z-direction as the vertical direction (See in Figure 3). The distance between the center

of the basket rim and the board is d. The center of the rim is the origin point O. The point that the collision

happens is named point C.
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(a) Overhead view (b) Side view

Figure 3: Rebound off the backboard

The motion of ball during the process of the lay-up shot could be classified into three different stages: the

stage before the ball hits the basket board, the stage during the ball is hitting the board, and the stage when the

ball leaves the basket board. The first and the last stages all can be viewed as projectile motion and they should

be focus on the velocity change.

Next, we specify variables in this numerical analysis. First, the linear velocity just after the player shoot the

ball is v0, the linear velocity just before the ball collides the backboard is v1, and the linear velocity just after

collision with the backboard is v2. Similarly, the angular velocity just after the player shoot the ball is ω0, the

angular velocity just before the ball collides the backboard is ω1, and the angular velocity just after collision
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with the backboard is ω2. Besides, the angle between the initial velocity and the x-axis is α, and the angle

between the initial velocity and the y-axis is γ. The angle between the velocity v1 and y-axis is β, and the angle

between the velocity v2 and y-axis is β
1

. The initial point of the ball is point P0.

Variable Explanation
x Displacement in x-direction.
y Displacement in y-direction.
z Displacement in z-direction.
v0 The linear velocity just after the player shoot the ball.
v1 The linear velocity just before the ball collides the backboard.
v2 The linear velocity just after collision with the backboard.
ω0 The angular velocity just after the player shoot the ball.
ω1 The angular velocity just before the ball collides the backboard.
ω2 The angular velocity just after collision with the backboard.
g The magnitude of gravitational acceleration, 9.81m/s2.
k The restitution coefficient in x-direction.
h1 The initial height of the basketball, which is 1.7 m
h2 The height of the basket rim, which is 3.05 m
d The horizontal distance between the basket rim and the backboard.
c The distance between the basket rim and the initial height of basketball.
α The angle between the initial velocity and the x-y plane.
θ The angle between the initial velocity and the y-z plane.
β The angle between the velocity v1 and y-axis.
β

1

The angle between the velocity v2 and y-axis.
O The original point.
C The collision point.
P0 The initial point.

Table 1: Variable Explanation Table

3.2.2 Simplified Bounce

To better illustrate the solution, we first consider rotation in only one dimension and motion in two dimensions.

We will discuss more complex cases once the model of the bounce is clearly established. Specifically, we

consider the motion in the y-direction and z-direction initially.

When the ball collides with the backboard, there is a frictional force that affects the vertical velocity of

the ball, vz , and energy loss due to the collision in the y-direction. This friction also contributes to a change

in rotational velocity. With the overall loss of kinetic energy, there is energy transfer between translational

and rotational modes [1]. Additionally, we do not consider sliding of the ball. The frictional force acts in the

direction opposite to the movement, causing the ball to spin along the z-axis, as demonstrated below.

We define the momentum as a vector P⃗ , which represents the product of the mass of the ball and its linear

velocity v⃗. The change in momentum, called impulse, is given by J “ ∆P⃗ “ m∆v⃗.

According to rebound theory, after the collision, the velocity changes direction, and its magnitude is equal

to the original magnitude multiplied by a constant k, which is the restitution coefficient in the y-direction. The
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equation for the velocity after collision is:

vx “ ´kvx0 (6)

Decomposing the impulse into the y-direction and z-direction, we have:

$

’

&

’

%

Jy “ m∆vy

Jz “ m∆vz

(7)

We define the angular velocity resulting from friction as ω. Since the ball has no initial angular velocity, a

single variable is sufficient to represent it. The moment of inertia, I , describes how difficult it is to rotate an

object. More specifically, I “
ř

mr2, where the moment of inertia is the sum of each part’s contribution. For

a thin spherical shell like a basketball, I “ 2
3mr2, where m is the mass and r is the radius [8]. The angular

momentum of the ball, denoted by L, is the product of the moment of inertia and the angular velocity [8]. The

change in angular momentum, known as angular impulse, is given by:

∆L “ Ipω2 ´ ω1q (8)

Since the initial angular velocity is zero, ∆ω “ ω.

According to the impulse-momentum principle, ∆L “ τ∆t. Rearranging gives ∆L “ Fr∆t. Since

impulse is the product of force and time, we have J “ F∆t. Therefore, for angular impulse:

∆L “ Jr (9)

By equating equations (8) and (9), we obtain:

Ipω2 ´ ω1q “ Jr (10)

Next, by equating the second equation in (7) with (10) and substituting ω with ωy and J with Jz , we have:

Ipωy2 ´ ωy1q “ m∆vzr “ mpvz2 ´ vz1qr (11)

Notice that angular impulse in y-direction will be converted to the impulse in z-direction, since the angular

impulse vector is perpendicular to the plane of rotation and indicates the axis around which the rotation occurs,

according to the definition of vectors related to angle.

Since we do not consider sliding, the final velocity in the z-direction is:

vz2 “ ωy2r (12)
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vy2 “ ´ωz2r (13)

By substituting vz2 “ ωy2r in equation (11), we get:

Ipωy2 ´ ωy1q

r
“ mpωy2r ´ vz1q (14)

Ipωz2 ´ ωz1q

r
“ mp´ωz2r ´ vy1q (15)

Rearranging gives:

ωy2

ˆ

I

r
´ mr

˙

“ ´mvz1 `
I

r
ωy1 (16)

ωz2

ˆ

I

r
` mr

˙

“ ´mvy1 `
I

r
ωz1 (17)

By substituting I “ 2
3mr2, we have:

ωy2

ˆ

2

3
mr ´ mr

˙

“ ´mvz1 `
2mr

3
ωy1 (18)

ωz2

ˆ

2

3
mr ` mr

˙

“ ´mvy1 `
2mr

3
ωz1 (19)

Simplifying:

ωy2 “
3pvz1 ´ 2rωy1q

r
(20)

ωz2 “
3p´vy1 ` 2rωz1q

5r
(21)

We have now obtained the angular velocity after the collision, which depends on three factors: the initial

linear velocity, the radius, and the initial angular velocity. Although there is no further interaction involving this

angular velocity in the paper, it plays a significant role in contributing to the ball’s trajectory due to the Magnus

effect. In addition to the angular velocity, we need to calculate the final linear velocity.

By equating the angular impulse and the moment of momentum from equation (9), we have:

Ipωy2 ´ ωy1q “ mpvz2 ´ vz1qr (22)

Since the ball does not slide on the backboard, the final velocity can be expressed as:

vz2 “ ωy2r (23)
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Combining these equations:

vz2 “
rpmrvz1 ´ Iωy1q

I ` mr2
(24)

Thus, we have the final angular and linear velocities after the collision.

ωy2 “
3pvz1 ` 2rωy1q

5r
(25)

vz2 “ 3pvz1 ´ 2rωy1q (26)

3.3 Bounce in Three Dimensions

Similarly to the bounce motion in two dimensions, the motion of the ball in three dimensions can be viewed to

experience three stages: the stage before the ball hits the basket board, the stage during the ball is hitting the

board, and the stage when the ball leaves the basket board.

3.3.1 The First Stage

Before analysis which includes angles, we first specify the velocity vector in three directions:

$

’

’

’

’

’

&

’

’

’

’

’

%

vx “ v cosα sinβ

vy “ v cosα cosβ

vz “ v sinα

(27)

Recalling from previous equations about trajectory functions (See in Equations 1, Equations 4, Equations

5), we have:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x “ vxt

y “ vyt “
vy
vx

x

z “ vz
x

vx
´

1

2
gp

x

vx
q2 ` h1

(28)

However, we need to consider the initial point of the ball. Therefore, we add an initial constant at the end of

each equation.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x “ vxt ` P0x

y “ vyt ` P0y “
vypx ´ P0xq

vx
` P0y

z “ vz
px ´ P0xq

vx
´

1

2
gp

x ´ P0x

vx
q2 ` P0z

(29)
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Substituting x with Cx, y with Cy , and z with Cz , we can express the collision point, which is the initial

point of the second stage:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Cx “ vx0t ` P0x

Cy “
vy0pCx ´ P0xq

vx0
` P0y

Cz “ vz0
pCx ´ P0xq

vx0
´

1

2
gp

Cx ´ P0x

vx0
q2 ` P0z

(30)

It is of importance to notice that Cx is constant, because the distance from the basket board to the center of

rim, original point O, is constant in x-axis. Then, the launching angle can be expressed with the velocity and

triangle functions.

$

’

’

&

’

’

%

α “ arctanp
vz0
vx0

q

β “ arctanp
vx0
vy0

q

(31)

Then, we can express Equation 30 just using the vector component in the x-direction vx instead of the vector

components in three directions. This is because expressing vectors with one vector component and two angles

is more intuitive than expressing vectors in three vector components. In other words, players know their initial

shooting angle better than vector components of their initial shooting velocity.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Cx “ vx0t ` P0x

Cy “
pCx ´ P0xq

tanβ
` P0y

Cz “
pCx ´ P0xq

tanα
´

1

2
gp

Cx ´ P0x

vx0
q2 ` P0z

(32)

In this way, it is more convenient for us to develop the system in the following passage.

3.3.2 The Second Stage

The moment of momentum can be expressed as follows:

$

’

’

’

’

’

&

’

’

’

’

’

%

Jx “ m∆vx

Jy “ m∆vy

Jz “ m∆vz

(33)

According to the scenario about the actual spin, we have [7]:
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$

’

’

’

’

’

&

’

’

’

’

’

%

Ipωx2 ´ ωx1q “ 0

Ipωy2 ´ ωy1q “ Jzr

Ipωz2 ´ ωz1q “ Jyr

(34)

The velocity can be expressed as following. Notice that vx1 “ vx0, since there is no external force during

the whole motion.

$

’

’

’

’

’

&

’

’

’

’

’

%

vx2 “ ´kvx1

vy2 “ ´rωz2

vz2 “ rωy2

(35)

According to equation 24, combining equation 33, equation 34, and equation 35, we have:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

vx2 “ ´kvx1

vy2 “
rpmrvy1 ´ Iωz1q

I ` mr2

vz2 “
rpmrvz1 ` Iωy1q

I ` mr2

(36)

Substituting I with 2
3mr2, we have:

$

’

’

’

’

’

&

’

’

’

’

’

%

vx2 “ ´kvx1

vy2 “
3vy1 ´ 2rωz1

5

vz2 “ 3vz1 ´ 2rωy1

(37)

The final angular velocity has no influence on the motion of the ball after the collision, so we do not discuss

it here.

3.3.3 The Third Stage

After the collision, the movement is same with the one at the first stage (see in equation 28). However, in this

stage, vector components should be expressed in three-components form, because we directly derive the value

of vector components in the second stage and it is unnecessary to calculate angles. Through combining the final

point and the collision point with the trajectory functions, we have the following.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 “ vx2t ` Cx

0 “
vy2p0 ´ Cxq

vx2
` Cy

0 “ vz2
p0 ´ Cxq

vx2
´

1

2
gp

p0 ´ Cxq

vx2
q2 ` Cz

(38)

15



3.4 Combination

Combine equations from the three stages above and simply:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 “ ´kvx1t ` Cx

0 “

´

3vy1´2rωz1

5

¯

Cx

kvx1
` Cy

0 “ p3vz1 ´ 2rωy1q
Cx

kvx1
´

1

2
g

ˆ

´Cx

´kvx1

˙2

` Cz

Rearranging by substituting vy1

vx1
with 1

tan β (Equation 31), we have:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 “ ´kvx1t ` Cx

0 “
3Cx

5k tanβ
´

2rCxωz1

5kvx1
` Cy

0 “
3Cx tanα

k
´

2rCxωy1

kvx1
´

1

2
g

ˆ

´Cx

´kvx1

˙2

` Cz

Here, according to Equation 32, we have tanβ “ Cx´P0x

Cy´P0y
and tanα “

pCx´P0xq

Cz´P0z` 1
2 g

´

Cx´P0x
vx0

¯2

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0 “ ´kvx1t ` Cx

0 “
3Cx

5k
´

Cx´P0x

Cy´P0y

¯ ´
2rCxωz1

5kvx1
` Cy

0 “
3CxpCx ´ P0xq

k

ˆ

Cz ´ P0z ` 1
2g

´

Cx´P0x

vx0

¯2
˙ ´

2rCxωy1

kvx1
´

1

2
g

ˆ

´Cx

´kvx1

˙2

` Cz

Through rearranging, we derive the final equations:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0 “ ´kvx1t ` Cx

ωz1 “

ˆ

5kvx1
2rCx

˙ ˆ

3CxpCy ´ P0yq

5kpCx ´ P0xq
` Cy

˙

ωy1 “

ˆ

kvx1
2rCx

˙

¨

˚

˚

˝

3CxpCx ´ P0xq

k

ˆ

Cz ´ P0z ` 1
2g

´

Cx´P0x

vx1

¯2
˙ ´

1

2
g

ˆ

´Cx

´kvx1

˙2

` Cz

˛

‹

‹

‚

(39)
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4 Results

Figure 4: 3D Plot of ωz1 vs Cy and vx1

Figure 5: 3D Plot of ωz1 vs Cy and vx1

From the equation (39), we know that for a certain Cy the angular velocity ωz1 is linear with the translational ve-

locity vx1. Therefore, if a player aims at a specific position on the backboard, he (she) can determine the needed

angular velocity in z-direction based on the translational velocity in x-direction. The direct linear relationship

is quite simple for players to adjust their layup shooting strategies on the court. From the graph depicting ωz1

versus Cy and vx1, we observe that the lower the velocity in the x-direction, the more gradual the change in

ωz1 with respect to Cy . This conclusion aligns with practical experience: lower velocities make it easier for the

player to control the ball, reducing the adjustments needed.

In addition, for a constant translational velocity vx1, the relationship between ωz1 and Cy is an inverse

proportional function; hence, the range of Cy should be as near to 0 as possible to make the needed angular

velocity small, thus increasing controlling easiness and shooting accuracy. This relationship warns players that

if they choose an extreme or odd position as a shoot aim, they need to dramatically adjust the angular velocity

of the ball in z-direction.
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Figure 6: 3D Plot of ωy1 vs Cz and vx1

Figure 7: 3D Plot of ωy1 vs Cz and vx1

For the graph of ωy1 versus Cz and vx1, a similar analysis method could be implemented. The third equa-

tion for angular velocity ωy1 is more complicated. Intuitively, a lower x-direction velocity results in a less

pronounced change in ωy1 with respect to Cz , making control easier. This finding is consistent with practical

experience, as controlling the ball becomes simpler when the initial speed is lower.

Moreover, starting from the equation (39), we find that for a given vx1 the angular velocity ωy1 is propor-

tional to K
Cz`B `KCz . As the increasing of Cz , K

Cz`B has less enough influence to ωy1. However, it could not

be neglected here, since discussing range of Cz is quite small (less than 1) and the difference between K and B

is not big. Therefore, the relationship between Cz and vx1 is similar with a milder linear function.
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5 Conclusion

This paper develops several mathematical models for basketball layup shots. To simplify the research question,

air interactions, including air resistance, the Magnus effect, and buoyant force, are neglected. The study begins

by investigating projectile motion, followed by an analysis of the rebound mechanism off the backboard. Phys-

ical theories are used to support the mathematical models, and the analysis of two-dimensional motion aids in

clearly expressing the theory in three dimensions.

In Sections 3.3 and 3.4, coherent and comprehensive models are constructed to explain the relationships

among various variables, such as initial angular velocity, launch angle, and initial position. It is essential to note

that a direct equation relating initial angular velocity and launch angle helps to illustrate these relationships.

The above results demonstrate these connections.

However, it is impractical for basketball players to recall mathematical equations and perform calculations

during the game or layup practice. This is why derivatives are used: it is more important to understand how

relationships change rather than memorizing specific values.

Although the conclusions may not be broadly applicable, the patterns shown in the model are still meaning-

ful to players, as they provide general guidance for adjustments in training. The model itself is theoretical, and

thus the conclusions are somewhat biased due to neglected factors, such as air resistance and the Magnus ef-

fect. Nevertheless, the pattern reveals more than just correlations; it provides a new understanding of basketball

aerodynamics. Players may realize that some factors, such as the relationship between ωy and v0, have minimal

impact, while others, such as shooting angles, play a significant role.

In practice, a general understanding of the science behind the sport can help players improve more effi-

ciently. With numerical analysis, players are not solely reliant on empirical intuition during practice; instead,

they can understand every detail of the ball’s motion during a layup.
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