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1 Introduction

1.1 Background

Scientific analysis has a significant impact on sports, including data analysis, sports medicine, and training
methods [1]. In basketball, besides of studying the athletes themselves—crucial for monitoring their health and
maintaining strength—studying the flight of the basketball is vital for improving players’ performance. Players
can make better decisions about positioning and launch angles if they understand the math and science behind
the game.

The academic evolution of basketball trajectory and mechanics started from broad numerical shooting mod-
els and then developed into specialized analyses of shot types, such as bank shots. Early works—such as
Numerical Analysis of the Basketball Shot [2] and A Theoretical Mechanics Analysis of Shooting Basket-
ball [3]—established comprehensive frameworks for quantifying variables like launch angle, velocity, and
spin. Although these studies primarily addressed shooting problems like-free throws, their foundational in-
sights paved the way for later investigations.

Building on these models, subsequent research acknowledged that bank shots present distinct geometric
challenges due to the ball’s interaction with the backboard. Optimal Targets for the Bank Shot in Men’s Bas-
ketball [4] not only proposed a comprehensive mathematical model considering many factors like drag force,
but also successfully identified optimal impact zones on the backboard. This work effectively bridged the gap
between general shot mechanics and the specialized demands of bank shot analysis.

Further researches incorporated more advanced computational methods. For instance, Application of Monte
Carlo Simulations to Improve Basketball Shooting Strategy [5] employed stochastic modeling to simulate dif-
ferent shot conditions, yielding probabilistic conclusions that are applicable to bank shot optimization. More
recently, LSTM-BEND: Predicting the Trajectories of Basketball [6] used machine learning to predict ball trajec-
tories with high precision, further refining our understanding of shot dynamics in more complicated scenarios,
in which more factors are considered.

Together, these studies illustrate a clear evolution—from early general models to targeted analyses of bank
shots—demonstrating how theoretical insights and computational innovations have progressively enriched the
academic field while informing practical strategies in competitive basketball.

Personally, I have played basketball for several years and have reviewed numerous basketball theories and
watched plenty of instructional videos to improve my shooting skills. However, most of these videos rely on
the coach’s personal experience rather than scientific research, and among researches an investigation to the
rotation in bank shot (layup shot) is lacked temporarily. Therefore, this research will investigate “what is the

relationship between the angular velocity and translational velocity of the basketball in layup shots.”



1.2 Scenario

The layup, also known as a bank shot layup, is one of the most fundamental and important techniques in
basketball. Players execute layups by either shooting the ball off the backboard or rolling it into the basket with
their fingers. Layups are effective scoring techniques since they are the closest shots to the basket, aside from
dunks. Over the past few decades, several types of layups have been developed and practiced. For example,
players must impart spin to the ball at a certain velocity and shoot it at a strategic angle to avoid defenders.
Given the importance of layups in basketball, players need to increase the probability of successfully scor-
ing. Therefore, controlling the trajectory of the ball is crucial. Brancazio proposed that players could shoot
more consistently if their shots require less energy [1]. This hypothesis has been used in other related studies
and will also be used in this paper. Besides controlling the velocity, players must adjust the launch angle and

spin of the basketball.
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Figure 1: Figures in three dimensions

2 Assumptions

1. This paper neglects the effects of air interactions, including air resistance, buoyant force, the Magnus
effect, and others. Thus, the only forces acting on the basketball are gravitational force and the normal
force from the backboard. Additionally, the trajectory of the ball in the air is assumed to be a perfect

parabola, which will be demonstrated in this paper.

2. A goal is considered scored when the center of the basketball coincides with the center of the basket rim.



Since the radius of the basketball is smaller than that of the basket rim, the ball will enter the basket when

the centers coincide. Furthermore, the ball must enter the basket from above.

3. In practice, players perform a layup when their jump height is insufficient for a dunk. Therefore, we

assume the initial height of the ball is lower than the height of the basket rim.

4. This paper uses real-world data. For example, the upper edge of the basketball rim in the NBA is 10
feet (3.05 m) above the floor and parallel to it. The mass of the basketball is approximately 0.6 kg.
The coefficient of restitution is between 0.85 and 0.88, and we specify it as 0.86 [7]. The magnitude of

gravitational acceleration is approximately 9.81 m/s.

3 Theory

3.1 Projectile trajectory function
3.1.1 Projectile Trajectory Function in Two Dimensions

Neglecting air resistance, the flight of the basketball can be treated as projectile motion, because the only forces
acting on the ball are gravity and the normal force from the backboard. The basketball may also spin due to
initial spin or interaction with the backboard, which will be explained later.

First, we analyze the trajectory function in two dimensions. We define the X-axis as the forward direction
and the Z-axis as the vertical direction. The variable = represents the horizontal displacement, z represents the
vertical displacement, ¥ represents the initial velocity, and y represents the shooting angle, which is the angle
between the initial velocity and the X-axis. Decomposing the vector ¢’ into components along the X-axis and
Z-axis, we have v, = |¥| cos~y and v, = |7 sin~y.

The velocity components are given by:

& = v, = |U|cosy
Z=wv, = |U|siny

Integrating both sides, we obtain:

xr=1v,t+c

Given the initial conditions ¢t = 0 and z = 0, we find ¢ = 0. Thus:



For the Z-direction, the velocity is expressed as:

Vz = Vz0 — gt
where v, is the initial velocity in the Z-direction, g is the gravitational acceleration, and ¢ is the flight time.
Substituting v, with the derivative of displacement z, we have the follows.
Z = V20 — gt

Integrating both sides, we get:
L o
z:vzot—igt +c

Given the initial conditions ¢t = 0 and z = hj, we find ¢ = hj, where h; is the initial height of the ball.

Therefore:

1
2z = vyt — 59152 + hy 2)

To build a trajectory function, the independent variable should be = and the dependent variable should be z.

Using x = v,ot, we substitute ¢ = ﬁ into the equation above:

Rearranging gives:

V20 g
z= a2t +
Vz0 2v%,

Substituting v,.o = || cos~y and v, = |7] sin~y, we have:

|U] siny g 2
= = +h
|0] cos 2(|v] cos7)2x !

Simplifying, we obtain the following.

z=tan’y-x—2 g 2+ hy 3)

(9] cos)?

Thus, the trajectory function in two dimensions is established.



3.1.2 Projectile trajectory function in Three Dimensions

For the trajectory function in 3 dimensional space, we can express the point in three dimensional space as
R(z) = (x,y(x), z(x)). For trajectory function in x-direction, we have the same equation with the one in two
dimensions, since the displacement in x-direction will be used as an unit to build further trajectory functions.

Indeed, we have:

T = Uyt

We have already yielded the function of z with respect to = from Eqns. (3). However, we still need to adjust
the angle to vector.
For the function of y with respect to x, we know that there is no forces in y-direction similar with the

situation in x-direction. We substitute x variables with y and we get
Y = vyt

Also, in order to build a trajectory function, the independent variable should be  and the dependent variable
should be y. For the equation above, substituting ¢ with ¢ = % using the equation x = v, t. Then we have:
Yy

y=—uw “

Vg
In z-direction, there is gravitational force applying on the ball, so the function is different from them in

x-direction and y-direction. Actually, the function of displacement in z-direction with respect to time is same

with the previous one (Equation 2).

1
z = vyt — §gt2 + hy
&)

x 1 T
= a0 = gy
Vz0 27 g0

To discuss easily, the velocity in three dimension will not appear; instead, the components of it—the velocity

in x-direction, the velocity in y-direction, and the velocity in z-direction—will substitute it.

3.2 Bounce Theory
3.2.1 General View

There are basically three types of rebound for the basketball in two dimensional space: without initial spin,
with forward initial spin, and with backward initial spin (See in Figure 2). By the way, the spin can be at any

direction and with any velocity technically.
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Figure 2: Brancazio, P. J. (1981) [Graph]. Physics of basketball [1]

We specify the x-direction as forward direction to the basket, the y-direction as horizontal direction along
the backboard, and the z-direction as the vertical direction (See in Figure 3). The distance between the center
of the basket rim and the board is d. The center of the rim is the origin point O. The point that the collision

happens is named point C'.



(a) Overhead view (b) Side view

Vz

Figure 3: Rebound off the backboard

The motion of ball during the process of the lay-up shot could be classified into three different stages: the
stage before the ball hits the basket board, the stage during the ball is hitting the board, and the stage when the
ball leaves the basket board. The first and the last stages all can be viewed as projectile motion and they should
be focus on the velocity change.

Next, we specify variables in this numerical analysis. First, the linear velocity just after the player shoot the
ball is vy, the linear velocity just before the ball collides the backboard is v, and the linear velocity just after
collision with the backboard is vy. Similarly, the angular velocity just after the player shoot the ball is wy, the

angular velocity just before the ball collides the backboard is w1, and the angular velocity just after collision



with the backboard is wy. Besides, the angle between the initial velocity and the x-axis is «, and the angle
between the initial velocity and the y-axis is . The angle between the velocity v; and y-axis is /3, and the angle

between the velocity vy and y-axis is B’ The initial point of the ball is point Fj.

Variable Explanation
x Displacement in x-direction.
Y Displacement in y-direction.
z Displacement in z-direction.
Vg The linear velocity just after the player shoot the ball.
V1 The linear velocity just before the ball collides the backboard.
V2 The linear velocity just after collision with the backboard.
wo The angular velocity just after the player shoot the ball.
w1 The angular velocity just before the ball collides the backboard.
wo The angular velocity just after collision with the backboard.

The magnitude of gravitational acceleration, 9.81 m/s”.

The restitution coefficient in x-direction.

The initial height of the basketball, which is 1.7 m

The height of the basket rim, which is 3.05 m

The horizontal distance between the basket rim and the backboard.
The distance between the basket rim and the initial height of basketball.
The angle between the initial velocity and the x-y plane.

The angle between the initial velocity and the y-z plane.

The angle between the velocity v; and y-axis.

The angle between the velocity ve and y-axis.
The original point.

The collision point.

The initial point.

I QO™ | oo | T T =

Table 1: Variable Explanation Table

3.2.2 Simplified Bounce

To better illustrate the solution, we first consider rotation in only one dimension and motion in two dimensions.
We will discuss more complex cases once the model of the bounce is clearly established. Specifically, we
consider the motion in the y-direction and z-direction initially.

When the ball collides with the backboard, there is a frictional force that affects the vertical velocity of
the ball, v,, and energy loss due to the collision in the y-direction. This friction also contributes to a change
in rotational velocity. With the overall loss of kinetic energy, there is energy transfer between translational
and rotational modes [1]. Additionally, we do not consider sliding of the ball. The frictional force acts in the
direction opposite to the movement, causing the ball to spin along the z-axis, as demonstrated below.

We define the momentum as a vector P, which represents the product of the mass of the ball and its linear
velocity ¢. The change in momentum, called impulse, is given by J = AP = mA®%.

According to rebound theory, after the collision, the velocity changes direction, and its magnitude is equal

to the original magnitude multiplied by a constant %, which is the restitution coefficient in the y-direction. The



equation for the velocity after collision is:

Uy = _kUrO (6)

Decomposing the impulse into the y-direction and z-direction, we have:

Jy = mAwv,
@)
J, = mAv,

We define the angular velocity resulting from friction as w. Since the ball has no initial angular velocity, a
single variable is sufficient to represent it. The moment of inertia, I, describes how difficult it is to rotate an
object. More specifically, I = >.mr?, where the moment of inertia is the sum of each part’s contribution. For
a thin spherical shell like a basketball, I = %mr2, where m is the mass and r is the radius [8]. The angular
momentum of the ball, denoted by L, is the product of the moment of inertia and the angular velocity [8]. The

change in angular momentum, known as angular impulse, is given by:
AL = I(UJQ — wl) (8)

Since the initial angular velocity is zero, Aw = w.
According to the impulse-momentum principle, AL = 7At. Rearranging gives AL = FrAt. Since

impulse is the product of force and time, we have J = F'At. Therefore, for angular impulse:
AL =Jr C))
By equating equations (8) and (9), we obtain:
IHwy —wy) =Jr (10)
Next, by equating the second equation in (7) with (10) and substituting w with w, and J with J, we have:
Iwy2 — wy1) = mAv,r = m(v,9 — v an

Notice that angular impulse in y-direction will be converted to the impulse in z-direction, since the angular
impulse vector is perpendicular to the plane of rotation and indicates the axis around which the rotation occurs,
according to the definition of vectors related to angle.

Since we do not consider sliding, the final velocity in the z-direction is:

Vz2 = Wyt (12)

11



'Uy2 = —WyaT
By substituting v,2 = w97 in equation (11), we get:

I(wyg — wyl)

" = m(wy2? — V21)

I(WZZ - Wzl)

" = m(—wzar — vy1)

Rearranging gives:

I 1
Wy2 | — —Mr | = =M1 + —Wy1
r r

1 I
Wea | —+mr | = —mvy1 + —Wz1
r r

o 2,2 .
By substituting I = $mr=, we have:

2mr
Wy2 <3mr — mr) = —Mv,1 + 3 Wy1

2 2mr
Weo | sMr +mr | = —MUy1 + ——W:1
3 3
Simplifying:
(v — 2
Wy — (va1 g TWy1)
3(—vy1 + 2rw,
Wag = (—vp rw:1)

5r

13)

(14)

as)

(16)

A7)

(18)

19)

(20)

ey

We have now obtained the angular velocity after the collision, which depends on three factors: the initial

linear velocity, the radius, and the initial angular velocity. Although there is no further interaction involving this

angular velocity in the paper, it plays a significant role in contributing to the ball’s trajectory due to the Magnus

effect. In addition to the angular velocity, we need to calculate the final linear velocity.

By equating the angular impulse and the moment of momentum from equation (9), we have:

Iwya — wy1) = m(vy2 — 1)1

Since the ball does not slide on the backboard, the final velocity can be expressed as:

Vz2 = Wy2T

12
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(23)



Combining these equations:
r(mrvs — Twyr)

Lo = 24
vz2 I+ mr? @4
Thus, we have the final angular and linear velocities after the collision.
o 3(va1 + 2rwy1) 25)
v2 51
V2 = 3(vz1 — 2rwy1) (26)

3.3 Bounce in Three Dimensions

Similarly to the bounce motion in two dimensions, the motion of the ball in three dimensions can be viewed to
experience three stages: the stage before the ball hits the basket board, the stage during the ball is hitting the

board, and the stage when the ball leaves the basket board.

3.3.1 The First Stage

Before analysis which includes angles, we first specify the velocity vector in three directions:

Uz = v COS asin 3
vy = v cosacos B 27
v, = vsin«

Recalling from previous equations about trajectory functions (See in Equations 1, Equations 4, Equations

5), we have:

T = vyt
Uy
y=uvyt=—"u (28)
Vg
T 1 =z
z=v,— — —g(—)?+ M

However, we need to consider the initial point of the ball. Therefore, we add an initial constant at the end of

each equation.

T = vt + Poy
vy (r — Pog
y = vyt + Py, = ¥+Poy (29)
z — Py 1 x— Py,
szz( 0)_7.9( O>2+P0z
Vg 2 Vg



Substituting « with C,, y with Cy;, and z with C,, we can express the collision point, which is the initial

point of the second stage:

Cyp = vgot + Poy

C, = e =)y b
Vz0
Cp — Py, 1 C,— Py
Cz=vz0( 0)_79( 0)2+POZ
Vz0 2 Vz0

(30)

It is of importance to notice that C; is constant, because the distance from the basket board to the center of

rim, original point O, is constant in x-axis. Then, the launching angle can be expressed with the velocity and

triangle functions.

o= arctan(@)
Vz0
v

B = arctan(—2)
Uy0

€2V

Then, we can express Equation 30 just using the vector component in the x-direction v, instead of the vector

components in three directions. This is because expressing vectors with one vector component and two angles

is more intuitive than expressing vectors in three vector components. In other words, players know their initial

shooting angle better than vector components of their initial shooting velocity.

Cy = vgot + Pou
(C:v - POw)

=-— "2+ P
Cy tan 8 +Foy
Cz: M_79(70)2"_13(%
tan o 2 V0

In this way, it is more convenient for us to develop the system in the following passage.

3.3.2 The Second Stage

The moment of momentum can be expressed as follows:

Jr = mAuvg
Jy = mAwv,
J, = mAv,

According to the scenario about the actual spin, we have [7]:

14
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(33)



Hwey —we1) =0
Iwys — wy1) = Jor (34)
Hwyo — we1) = Jyr

The velocity can be expressed as following. Notice that v;; = v,0, since there is no external force during

the whole motion.

Vg2 = _kvzl
Vy2 = —TWz2 (35)
Vz2 = TWy2

According to equation 24, combining equation 33, equation 34, and equation 35, we have:

Vg2 = _kvzl
r(mroy; — Iw,)
R g 36)
_ r(mrv + Twyr)
Va2 = I+mr?
Substituting I with %er, we have:
Vg2 = _kvacl
3Uy1 — 2rw
Uy = Olyl — 4TWel (37)

5
Vyo = U1 — 2rwy1
The final angular velocity has no influence on the motion of the ball after the collision, so we do not discuss

it here.

3.3.3 The Third Stage

After the collision, the movement is same with the one at the first stage (see in equation 28). However, in this
stage, vector components should be expressed in three-components form, because we directly derive the value
of vector components in the second stage and it is unnecessary to calculate angles. Through combining the final

point and the collision point with the trajectory functions, we have the following.

0 = vgot + OL
0—-C,
0= 020=C) o (38)
Vg2
0—-C, 1 (0-C,
0— 0, G L 0=y ¢
Vg2 2 Vg2

15



3.4 Combination

Combine equations from the three stages above and simply:

0=—kvgit+ C,

(3vy1—2rwzl) C
0=~ 7

C
kvzq M
C. 1 (-C.\°
0:(31}'21_27‘“)?/1)]{1)1_29(]{1) 1) +CZ
\ z z

Rearranging by substituting % with ﬁ (Equation 31), we have:
0= —kvut+C,
0= 3C, 2rCrw,1
~ bktanf 5kvg1

2
0= 3C, tan o 3 2rCuwy 1 ( —C, ) e

+Cy

k koo, 29\ Thoy,

Here, according to Equation 32, we have tan 8 = Ca

—Pogs — (Cz_POz)
o and tan o

Cx—Poz \?
C—Po+4g( 950z

0 = 7]<1U11t + Oz
2
J 5k (C?Pg: ) zl
3C,(Cy — Pog 2rC, 1 ([ =C \?
0= ( be) 2\ Tk;val_Zg(—k‘v > O
k (Cz — Py, + g (Gl ) " "
Through rearranging, we derive the final equations:
0= —kvzit +Cy
5kvx1 3C¢(Oy — Poy)
2zl = C
Wl <2rcz> < 5k(Cy — Pog) T
kv, 3C,(Cy — Pog 1 (-0 \?
= (2) S U W
x k <Cz o POz + %g (sz:lfoz) ) xl

16



4 Results

3D Plot of w.; vs O, and v,
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Figure 4: 3D Plot of w1 vs C and v
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3D Plot of w.; vs C, and v,
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Figure 5: 3D Plot of w1 vs Cy, and v,

From the equation (39), we know that for a certain C'y the angular velocity w1 is linear with the translational ve-
locity v,1. Therefore, if a player aims at a specific position on the backboard, he (she) can determine the needed
angular velocity in z-direction based on the translational velocity in x-direction. The direct linear relationship
is quite simple for players to adjust their layup shooting strategies on the court. From the graph depicting w,;
versus Cy and v,1, we observe that the lower the velocity in the x-direction, the more gradual the change in
w,1 with respect to C,,. This conclusion aligns with practical experience: lower velocities make it easier for the
player to control the ball, reducing the adjustments needed.

In addition, for a constant translational velocity v, the relationship between w,; and C, is an inverse
proportional function; hence, the range of C,, should be as near to 0 as possible to make the needed angular
velocity small, thus increasing controlling easiness and shooting accuracy. This relationship warns players that
if they choose an extreme or odd position as a shoot aim, they need to dramatically adjust the angular velocity

of the ball in z-direction.
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3D Plot of wy; vs C, and vy,
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Figure 6: 3D Plot of wy; vs C, and v,

3D Plot of wy; vs C. and v,y
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Figure 7: 3D Plot of wy; vs C, and v,

For the graph of w,,; versus C, and v,1, a similar analysis method could be implemented. The third equa-
tion for angular velocity w,; is more complicated. Intuitively, a lower x-direction velocity results in a less
pronounced change in w,; with respect to C,, making control easier. This finding is consistent with practical
experience, as controlling the ball becomes simpler when the initial speed is lower.

Moreover, starting from the equation (39), we find that for a given v, the angular velocity wy; is propor-
tional to Cz% + K C.,. As the increasing of C',, Cz% has less enough influence to wy;. However, it could not
be neglected here, since discussing range of C, is quite small (less than 1) and the difference between K and B

is not big. Therefore, the relationship between C, and v, is similar with a milder linear function.



5 Conclusion

This paper develops several mathematical models for basketball layup shots. To simplify the research question,
air interactions, including air resistance, the Magnus effect, and buoyant force, are neglected. The study begins
by investigating projectile motion, followed by an analysis of the rebound mechanism off the backboard. Phys-
ical theories are used to support the mathematical models, and the analysis of two-dimensional motion aids in
clearly expressing the theory in three dimensions.

In Sections 3.3 and 3.4, coherent and comprehensive models are constructed to explain the relationships
among various variables, such as initial angular velocity, launch angle, and initial position. It is essential to note
that a direct equation relating initial angular velocity and launch angle helps to illustrate these relationships.
The above results demonstrate these connections.

However, it is impractical for basketball players to recall mathematical equations and perform calculations
during the game or layup practice. This is why derivatives are used: it is more important to understand how
relationships change rather than memorizing specific values.

Although the conclusions may not be broadly applicable, the patterns shown in the model are still meaning-
ful to players, as they provide general guidance for adjustments in training. The model itself is theoretical, and
thus the conclusions are somewhat biased due to neglected factors, such as air resistance and the Magnus ef-
fect. Nevertheless, the pattern reveals more than just correlations; it provides a new understanding of basketball
aerodynamics. Players may realize that some factors, such as the relationship between w,, and vg, have minimal
impact, while others, such as shooting angles, play a significant role.

In practice, a general understanding of the science behind the sport can help players improve more effi-
ciently. With numerical analysis, players are not solely reliant on empirical intuition during practice; instead,

they can understand every detail of the ball’s motion during a layup.
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